VENOLATIOUUS

Sumon K. Sinha, Ph.D., P.E, SINHATECH, Oxford, Mississippi www.sinhatech.com

TRADITIONAL AERODYNAMICS for Maximizing L/D

- Maintain Laminar Flow
- Avoid Boundary Layer Separation
- Maintain Elliptical Spanwise Lift Distribution

MOTIVATION

- Highest L/D is for Sailplanes (70 for AR of 33 with flaps, 48 for AR of 22 without flaps)
- L/D Restricted by Limits of Laminar Flow

Can we do better than Laminar Flow?

AIRFOIL DESIGN APPROACHES FOR L/D MAXIMIZATION

Liebeck R.H. (J. of Aircraft, Oct 1973) Airfoil. Cd ~ 0.01 for 1.6 > Cl > 0.6

GT-3 testing simulation on XFOIL 6.94 Cp vs x Plot NLF-0414-F airfoil ReD = 5.775 * 10^6

Cp vs X plot – The blue line represents the pressure distribution on the lower surface and the yellow line represents the pressure distribution on the upper surface.

L/D Increase using Flow Control

- The turbulent skin friction drag reduction by the use of *Riblets* (δCD/CD of about 1-2% flat-plate)
- The *hybrid laminar flow* technology (δCD/CD of about 6 - 10% flat plate);
- The innovative wing-tip devices (δCD/CD of about 5 - 8% flight);
- The sub-layers vortex generators and MEMS technology which can be used to control flow separation.
- Deturbulator Flow Control reduces parasitic & induced drag

(δCD/CD as much as 30% for Total Aircraft) *REVOLUTION*

Shapes of riblet films Source:http://aerodyn.org/Drag/riblets

Wing-tip Devices

Source:J.Reneaux., "Overview on drag reduction technologies for civil transport aircrafts" European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004.

The Sinha-Deturbulator Approach

SINHA FLEXIBLE COMPOSITE SURFACE DETURBULATOR (FCSD)

FLOW-FCSD INTERACTION

BEST INTERACTION where $\partial p / \partial x = 0$

• FCSD passes oscillation without damping at the *Interaction Frequency*:

 $\mathbf{f} = \mathbf{U}/\mathbf{s}$

Attenuates other frequencies

•This *stabilizes the shear layer* and mitigates turbulent dissipation

Boundary Layer Velocity Profiles Showing Effect of Deturbulation

Development History

- Preliminary Drag Reduction Studies jointly with Global Aircraft 1999-2000 on GT-3 Aircraft based on Electrically actuated Active Flexible Wall Transducer (Invented in 1993, Sinha, 1999 Patent)
- Passive Flexible Composite Surface Deturbulator observed in 2001 (Pending Patents, Sinha 2003, 2004, 2005). Subsequent 15-20% wing profile drag reduction on NLF-0414F on GT-3 (NASA Sponsored project with Advanced Technologies, 2004).
- Sailplane Drag Reduction (2002-Present): 5-30% enhancement of total Lift/Drag over a wide range of airspeeds for the Standard Cirrus 15-m span Sailplane.

Previous Research On Active Flexible Wall (AFW Transducer)

- FCSD concept evolved out of an earlier electrically powered AFW (Sinha, 1999).
- Mylar stretched across the high and low electrode.
- Air gap between Mylar and electrode provide the mechanical damping.
- DC bias applied across membrane
- Flow-membrane interaction produces an AC signal
- AC signal decomposed into fundamental flow-membrane frequencies
- Membrane actuated at those aforementioned frequencies

Spectrum of AFW sensed signals on a cylinder showing the 2.25 kHz interaction

Schematic of the Active Flexible Wall (AFW) Transducer

MODIFICATION OF TURBULENCE BY FLEXIBLE SURFACE

SPECTRA OF STREAMWISE VELOCITY FLUCTUATIONS

With (top) and Without (bottom) Flexible-Surface Interaction for Separated Flow over a Cylinder in Crossflow for Re = 150,000, M = 0.05 at $\theta = 90^{\circ}$ from stagnation (From: Sinha and Wang, 1999, AIAA Paper 99-0923)

TESTS ON NLF 0414F WING

Transition from AFW to FCSD

- Unexcited AFW produced a boundary layer profile very similar to the excited AFW.
- Difference in percentage drag reduction is minimal.
- FCSD Simplifies the manufacturing and installation procedure.
- More pragmatic on retrofitting existing aircrafts

GT-3 WING BOTTOM VEL PROFILES @ 0.8C

Comparision of coefficient of Total drag Vs ReD-GT-3- Clean Wing and FCSD Final

ReD

ReD

DETURBULATOR CLOSE UP & SURFACE OIL FLOW PATTERNS

CLOSE UP OF FCSD

TESTS ON STANDARD CIRRUS SAILPLANE TO IMPROVE L/D

Gross Weight: 728 lbs Best L/D: 36 @ 52-kts Wing Loading: 6.8 lb/ft² Aspect Ratio: 22.5

STANDARD CIRRUS LOWER SURFACE DRAG REDUCTION

Fig. 7. Drag-probe pressure sensor output (proportional to upstream stagnation pressure minus wake stagnation pressure). A reduction in output indicates drag reduction resulting from FCSD applications (1FCSD and 2FCSD) on wing bottom at the given location. % change (reduction) scale is on the right

Sinhatech Low-Speed Wind-Tunnel

Sinhatech Slow-Speed Wind-Tunnel

Experimental set-up showing the pressure transducers and manometer

Airfoils Tested in the Wind-Tunnel

Close up of tunnel test section showing NLF-0414F airfoil being tested

Stereo-lithography used to develop the Wortmann FX-S-02-196 Airfoil

XFOIL SIMULATION OF STANDARD CIRRUS 53"-SPAN WORTMANN AIRFOIL

Pressure distribution on 2nd. Wind-Tunnel model of 53-Inch Span Section of Standard Cirrus Wing (New FCSD installion on Suction Side Only)-11/20/04

SKIN FRICTION REDUCTION

Drag Reduction on a Standard Cirrus Sailplane (Wing Top) Standard Cirrus - Upper Surface 53" Station - 10/30/2004

PARALLEL FLIGHT WITH ASW-28 SAILPLANE HAVING 18% LOWER SINK RATE COMPARED TO UNTREATED STANDARD CIRRUS

Standard Cirrus and ASW-28 Parallel Flight at 80 kts Cherry Valley, Arkansas - March 19, 2005

Sink Rates with Modified Full Span FCSD Treatment

L/D Improvement with Modified Full Span FCSD Treatment

SUMMARY OF REVOLUTIONARY FCSD AERODYNAMICS

- FCSD Reduces Turbulence Creates "Slip Layer"
- Reduces Skin Friction Increases Lift
- Reduces Induced and Parasitic Drag Across Speed Range.
- Increased Best Sailplane L/D by 7-11%
- Max Sailplane L/D increase 30%
- Max Section L/D increase (Low-Re) ~ 400%

OTHER Important ISSUES

- Consistency
- Robustness
- Integration with Wing at the Design stage

ACKNOWLEDGEMENTS

- National Science Foundation
- NASA
- Oxford Aero Equipment
- Global Aircraft
- Mr. Robert Williams
- Mr. Sundeep Ravande

